It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The North Atlantic exhibits temperature variations on multidecadal time scales, summarized as the Atlantic multidecadal variability (AMV). The AMV plays an essential role for regional climate and is a key driver of the low-frequency variability in Northern Europe. This study analyzed the interaction between the atmosphere and the ocean using Coupled Model Intercomparison Project 6 (CMIP6) control runs. The results showed that the physical mechanisms underlying decadal or longer time scales differ among CMIP6 models, which allowed them to be sorted into two clusters. For the first cluster, a significant coherence between the North Atlantic Oscillation (NAO) and the AMV was found. Further, it showed a strong negative NAO response and decreasing precipitation over Northern Europe. In contrast, the second cluster showed no significant coherence between NAO and AMV. This non-coherent cluster developed a low-pressure anomaly in the subpolar gyre and showed increasing precipitation over Europe. Differences in the northward extension of the Atlantic meridional overturning circulation (AMOC) between the two clusters were identified and linked to the different atmospheric responses. Our findings have important implications for European climate, since predictions of an increase or decrease in precipitation over Northern Europe will be model-dependent.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Leibniz Institute for Baltic Sea Research , Warnemünde, Rostock, Germany
2 Leibniz Institute for Baltic Sea Research , Warnemünde, Rostock, Germany; Swedish Meteorological and Hydrological Institute , Norrköping, Sweden
3 MARUM—Center for Marine Environmental Sciences, University of Bremen , Bremen, Germany