Full text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Abstract. In this paper, the fundamental properties of fractional calculus are discussed with the aim of extending the definition of fractional operators by using wavelets. The Haar wavelet fractional operator is defined, in a more general form, independently on the kernel of the fractional integral.

Alternate abstract:

Käesolevas artiklis käsitletakse murrulise diferentsiaal- ja integraalarvutuse põhiomadusi eesmärgiga laiendada murruliste operaatorite definitsiooni. Töös defineeritakse murrulist järku tuletis, kasutades Haari lainikuid piirväärtusena, mis sõltub tuuma Haari lainikute kordajatest.

Details

Title
Haar wavelet fractional derivative
Author
Cattani, Carlo 1 

 Engineering School, DEIM, University of "La Tuscia", Via del Paradiso 47, 01100 Viterbo, Italy; [email protected] 
Pages
55-64
Section
WAVELETS AND FRACTIONAL CALCULUS
Publication year
2022
Publication date
2022
Publisher
Teaduste Akadeemia Kirjastus (Estonian Academy Publishers)
ISSN
17366046
e-ISSN
17367530
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2645223975
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.