It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Alpine goat (Capra aegagrus hircus) is parasitized by the barber pole worm (Haemonchus contortus). Hematological parameters from transcript and metagenome analysis in the host are reflective of infestation. We explored comparisons between blood samples of control, infected, infected zoledronic acid-treated, and infected antibody (anti-γδ T cells) treated wethers under controlled conditions. Seven days post-inoculation (dpi), we identified 7,627 transcripts associated with the different treatment types. Microbiome measurements at 7 dpi revealed fewer raw read counts across all treatments and a less diverse microbial flora than at 21 dpi. This study identifies treatment specific transcripts and an increase in microflora abundance and diversity as wethers age. Further, F/B ratio reflect health, based on depression or elevation above thresholds defined by the baseline of non-infected controls. Forty Alpine wethers were studied where blood samples were collected from five goats in four treatment groups on 7 dpi and 21 dpi. Transcript and microbiome profiles were obtained using the Partek Flow (St. Louis, Missouri, USA) software suites pipelines. Inflammation comparisons were based on the Firmicutes/Bacteriodetes ratios that are calculated as well as the reduction of microbial diversity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Langston University, School of Agriculture and Applied Sciences, Langston, USA (GRID:grid.258945.7) (ISNI:0000 0001 0684 3891)
2 Oklahoma State University, Institute for Biosecurity and Microbial Forensics, Stillwater, USA (GRID:grid.65519.3e) (ISNI:0000 0001 0721 7331)
3 Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551)
4 Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, USA (GRID:grid.65519.3e) (ISNI:0000 0001 0721 7331)