It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Drop impact causes severe surface erosion, dictating many important natural, environmental and engineering processes and calling for substantial prevention and preservation efforts. Nevertheless, despite extensive studies on the kinematic features of impacting drops over the last two decades, the dynamic process that leads to the drop-impact erosion is still far from clear. Here, we develop a method of high-speed stress microscopy, which measures the key dynamic properties of drop impact responsible for erosion, i.e., the shear stress and pressure distributions of impacting drops, with unprecedented spatiotemporal resolutions. Our experiments reveal the fast propagation of self-similar noncentral stress maxima underneath impacting drops and quantify the shear force on impacted substrates. Moreover, we examine the deformation of elastic substrates under impact and uncover impact-induced surface shock waves. Our study opens the door for quantitative measurements of the impact stress of liquid drops and sheds light on the origin of low-speed drop-impact erosion.
The dynamic process behind the low-speed drop-impact erosion remains challenging to understand. Cheng et al. develop a method of high-speed microscopy, revealing the fast propagation of self-similar stress maxima underneath impacting drops and the formation of surface waves on impacted substrates.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, USA (GRID:grid.17635.36) (ISNI:0000000419368657)
2 Universidad de Santiago de Chile (USACH), Departamento de Física, Facultad de Ciencia, Santiago, Chile (GRID:grid.412179.8) (ISNI:0000 0001 2191 5013)
3 Universidad de O’Higgins, Instituto de Ciencias de la Ingeniería, Rancagua, Chile (GRID:grid.499370.0) (ISNI:0000 0004 6481 8274)