Full Text

Turn on search term navigation

© 2022, Han et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Neurotransmitters are generated by de novo synthesis and are essential for sustained, high-frequency synaptic transmission. Histamine, a monoamine neurotransmitter, is synthesized through decarboxylation of histidine by histidine decarboxylase (Hdc). However, little is known about how histidine is presented to Hdc as a precursor. Here, we identified a specific histidine transporter, TADR (torn and diminished rhabdomeres), which is required for visual transmission in Drosophila. Both TADR and Hdc localized to neuronal terminals, and mutations in tadr reduced levels of histamine, thus disrupting visual synaptic transmission and phototaxis behavior. These results demonstrate that a specific amino acid transporter provides precursors for monoamine neurotransmitters, providing the first genetic evidence that a histidine amino acid transporter plays a critical role in synaptic transmission. These results suggest that TADR-dependent local de novo synthesis of histamine is required for synaptic transmission.

Details

Title
Tadr is an axonal histidine transporter required for visual neurotransmission in Drosophila
Author
Han Yongchao; Peng, Lei; Wang, Tao
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2022
Publication date
2022
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2645793373
Copyright
© 2022, Han et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.