Full Text

Turn on search term navigation

© 2022 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to explore the impact of ozonated water (OW) disinfestation on soil fungal community composition in continuous ginger field. All soil samples were collected in continuous ginger field. There were two groups and 5 time points (0, 1, 3, 5, 9 day) in our study, including OW disinfestation treatment group (O3 group) and control group (CK group). Via internal transcribed spacer (ITS) sequencing and further analysis, the changes of fungal community composition were determined. As a result, at 0 and 9 days after aeration, the operational taxonomic units (OTUs) in O3 group were significantly higher than that in CK group. Compared with the CK group, in O3 group: the ACE and Chao1 index significantly increased on day 1, and the Shannon index significantly decreased while Simpson index significantly increased on day 0 after aeration. In O3 group, there were dynamic changes of top 10 abundance fungi from the genus-level and the growth of Trichoderma and Rhodotorula had been promoted while Hannaella was inhibited. In conclusion, OW disinfestation had complicated impacts on fungal communities in continuous ginger fields. The growth of Trichoderma and Rhodotorula has been promoted during disinfestation, which provided more reference information for soil OW disinfestation research.

Details

Title
Impact of ozonated water disinfestation on soil fungal community composition in continuous ginger field
Author
Zhang, Bo; Ma, Liguo; Zhang, Yueli; Qi, Kai; Li, Changsong; Qi, Junshan
First page
e0266619
Section
Research Article
Publication year
2022
Publication date
Apr 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2648291720
Copyright
© 2022 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.