It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The study investigated the effect of organic/biofertilizers in intercropping patterns on seed yield and yield components and essential oil, fatty acid, and phenolic compounds of fennel (Foeniculum vulgare L.) and fenugreek (Trigonella foenum-graecum L.). Experimental treatments included the application of humic acid (HA), biofertilizers (BFS), and the unfertilized control in five planting patterns [1 row fennel + 2 rows fenugreek intercropping (1F:2FG), 2 rows fennel + 2 rows fenugreek intercropping (2F:2FG), 2 rows fennel + 4 rows fenugreek intercropping (2F:4FG), and sole cropping of each species]. Sole cropping with BFS produced the highest seed yields for fennel (2233 kg ha−1) and fenugreek (1240 kg ha–1). In contrast, the 2F:2FG intercropping ratio with BFS yielded the maximum fixed oil content for fennel (17.4%) and fenugreek (8.3%). Application of HA and BFS enhanced oil yields by 66% and 75% in fennel and 40% and 57% in fenugreek, respectively. The 2F:2FG intercropping ratio with BFS produced the maximum essential oil constituents [(E)-anethole, estragole, and fenchone] in fennel. In addition, 2F:4FG with BFS and 1F:1FG with HA produced the highest unsaturated fatty acid (oleic and linoleic acids) concentration in both species. The 2F:2FG intercropping ratio with BFS and HA produced the highest chlorogenic acid and quercetin contents, respectively, in fennel. In contrast, the 2F:4FG intercropping ratio with HA produced the highest chlorogenic acid and caffeic acid contents in fenugreek. Intercropping fennel/fenugreek with BFS or HA improved the essential oil content (fennel only), fixed oil quality and quantity, and phenolic compounds and created a more sustainable cultivation system than sole cropping systems for both species under low-input conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Urmia University, Department of Plant Production and Genetics, Faculty of Agriculture, Urmia, Iran (GRID:grid.412763.5) (ISNI:0000 0004 0442 8645)
2 Iranian Academic Center for Education Culture and Research (ACECR), Department of Chromatography, Urmia, Iran (GRID:grid.412763.5)
3 The Nature Conservancy, Center for Sustainability Science, Arlington, USA (GRID:grid.422375.5) (ISNI:0000 0004 0591 6771)
4 The University of Western Australia, The UWA Institute of Agriculture, Perth, Australia (GRID:grid.1012.2) (ISNI:0000 0004 1936 7910)