It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A new cold rotary forging technology of the internal helical involute spline was presented based on an analysis of the structure of automotive starter guide cylinder. 3D rigid-plastic finite element model was employed. Billet deformation, Billet equivalent stress and forming load were investigated under the DEFORM 3D software environment, then the forming process parameters were applied in the forming trials, and the simulation results are conformed with the experimental results. The validity of 3D finite element simulation model has been verified. The research results show that the proposed cold rotary forging technology can be efficient in handling of the forming manufacturing problems of automobile starter guide cylinder with internal helical involute spline.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer