Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The goal of a tour recommendation is to recommend the best destinations according to the preferences of each tourist. The task of tour recommendation is challenging in that it not only has to consider the ratings, as do existing traditional recommendation problems, but it must also consider the personalization of the unique characteristics, such as diversity, travel distance, and popularity of the travel destination, which previous studies have failed to take into account. In this paper, we propose, for the first time, aspect personalization: we find out how important each user considers the diversity, distance and popularity of a travel destination when choosing where to visit. Then, we provide recommendations on tourist attractions by combining the personalized score for each factor and the predicted score. For the evaluation, we gathered user ratings and metadata of POIs from TripAdvisor and Naver. Experimental results showed that the proposed method had an 82%, 24% and 20% improvement in precision and a 129%, 35% and 22% improvement in recall in terms of top-1, top-2 and top-3 recommendations.

Details

Title
Personalized Tour Recommendation via Analyzing User Tastes for Travel Distance, Diversity and Popularity
Author
Lee, Jongsoo 1 ; Jung Ah Shin 2 ; Dong-Kyu Chae 1   VIAFID ORCID Logo  ; Lee, Sang-Chul 3 

 Department of Computer and Software, Hanyang University, Seoul 04763, Korea; [email protected] (J.L.); [email protected] (D.-K.C.) 
 The Data Science Institute, Columbia University, New York, NY 10027, USA; [email protected] 
 Division of Nanotechnology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Deagu 42988, Korea 
First page
1120
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2648988921
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.