Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a flux-weakening model predictive control (FW-MPC) for the interior permanent magnet synchronous motor (IPMSM) drive system. The FW control is a strategy to extend the IPMSM’s operating region. However, the primary FW needs to track the torque reference and maximize the electrical torque per current amplitude with the current and voltage limitations. The two objects make it impossible to solve the FW problem using the optimization method. We proposed an equivalent optimization problem to simplify the complex FW problem, including two objective functions. The MPC is selected as the controller due to its high robustness and transient performance. The constraints from the equivalent optimization problem are added in the MPC to control the IPMSM in the FW region. The simulation and experiment results indicate that the proposed FW-MPC is feasible and effective in driving the IPMSM in the FW region. The proposed FW-MPC can find the optimal point with the maximum electrical torque satisfying the current and voltage limitations. Therefore, the proposed FW-MPC can extend the IPMSM’s operating region, benefiting the IPMSM’s application.

Details

Title
Flux-Weakening Drive for IPMSM Based on Model Predictive Control
Author
Zhang, Yunfei  VIAFID ORCID Logo  ; Qi, Rong
First page
2543
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649000713
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.