Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As sessile organisms, plants exhibit extraordinary plasticity and have evolved sophisticated mechanisms to adapt and mitigate the adverse effects of environmental fluctuations. Heterotrimeric G proteins (G proteins), composed of α, β, and γ subunits, are universal signaling molecules mediating the response to a myriad of internal and external signals. Numerous studies have identified G proteins as essential components of the organismal response to stress, leading to adaptation and ultimately survival in plants and animal systems. In plants, G proteins control multiple signaling pathways regulating the response to drought, salt, cold, and heat stresses. G proteins signal through two functional modules, the Gα subunit and the Gβγ dimer, each of which can start either independent or interdependent signaling pathways. Improving the understanding of the role of G proteins in stress reactions can lead to the development of more resilient crops through traditional breeding or biotechnological methods, ensuring global food security. In this review, we summarize and discuss the current knowledge on the roles of the different G protein subunits in response to abiotic stress and suggest future directions for research.

Details

Title
Heterotrimeric G Protein Signaling in Abiotic Stress
Author
Wang, Yijie  VIAFID ORCID Logo  ; Botella, Jose Ramón
First page
876
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649019807
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.