Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The need to support existing sewage systems is obvious due to the noticeable consequences of climate change, such as extreme rainfall, which is causing more urban flooding. It is believed that these phenomena will intensify in the long-term, and that sewage systems will be overloaded with stormwater. Consequently, cities will need more opportunities to protect themselves from flooding. Moreover, longer periods of drought will increase the temperatures in towns. The use of blue and green infrastructure is being used to adapt to climate change and to limit its effects in cities. However, it is important not to apply these solutions indiscriminately. They have obvious advantages, but are also limited in their uses. Facilities are also being developed for the design and construction of green infrastructure. This article presents the benefits of using rain gardens in urban spaces and in relation to other forms of blue–green infrastructure; it also explored the problems that may occur while using them. More important facilitations in the implementation of rain gardens into urban fabrics are discussed, particularly in the context of the existing inconveniences. A holistic approach to the issue was applied addressing technical, economic, environmental, and social aspects.

Details

Title
Benefits, Inconveniences, and Facilities of the Application of Rain Gardens in Urban Spaces from the Perspective of Climate Change—A Review
Author
Bąk, Joanna 1 ; Barjenbruch, Matthias 2 

 Department of Water Supply, Sewerage and Environmental Monitoring, Faculty of Environmental Engineering and Energy, Cracow University of Technology, 31-155 Krakow, Poland 
 Department of Urban Water Management, Institute of Civil Engineering, Technische Universität Berlin, 13355 Berlin, Germany; [email protected] 
First page
1153
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649024561
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.