Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fast and accurate smoke detection is very important for reducing fire damage. Due to the complexity and changeable nature of smoke scenes, existing smoke detection technology has the problems of a low detection rate and a high false negative rate, and the robustness and generalization ability of the algorithms are not high. Therefore, this paper proposes a smoke detection model based on the improved YOLOv5. First, a large number of real smoke and synthetic smoke images were collected to form a dataset. Different loss functions (GIoU, DIoU, CIoU) were used on three different models of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l), and YOLOv5m was used as the baseline model. Then, because of the problem of small numbers of smoke training samples, the mosaic enhancement method was used to randomly crop, scale and arrange nine images to form new images. To solve the problem of inaccurate anchor box prior information in YOLOv5, a dynamic anchor box mechanism is proposed. An anchor box was generated for the training dataset through the k-means++ clustering algorithm. The dynamic anchor box module was added to the model, and the size and position of the anchor box were dynamically updated in the network training process. Aiming at the problem of unbalanced feature maps in different scales of YOLOv5, an attention mechanism is proposed to improve the network detection performance by adding channel attention and spatial attention to the original network structure. Compared with the traditional deep learning algorithm, the detection performance of the improved algorithm in this paper was is 4.4% higher than the mAP of the baseline model, and the detection speed reached 85 FPS, which is obviously better and can meet engineering application requirements.

Details

Title
A Smoke Detection Model Based on Improved YOLOv5
Author
Wang, Zhong  VIAFID ORCID Logo  ; Wu, Lei; Li, Tong; Shi, Peibei
First page
1190
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649042589
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.