Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carbon-based nanomaterials have a high thermal conductivity, which can be exploited to prepare nanofluids. Graphene is a hydrophobic substance, and consequently, graphene-based nanofluid stability is improved by adding surfactants. An attractive alternative is the decoration of reduced graphene oxide (rGO) with metallic materials to improve the thermal conductivity without affecting the stability of nanofluids. This study focuses on the synthesis and characterization of rGO/Ag (0.1 wt.%) aqueous nanofluids. Moreover, the effects of the Ag concentration (0.01–1 M) on the thermal conductivity and viscosity during the synthesis of rGO/Ag composite are analyzed. The nanofluid thermal conductivity showed increases in relation to the base fluid, the most promising being 28.43 and 26.25% for 0.1 and 1 M of Ag, respectively. Furthermore, the nanofluids were Newtonian in the analyzed range of shear rates and presented a moderate increase (<11%) in viscosity. Aqueous nanofluids based on rGO/Ag nanocomposites are a potential alternative for applications as heat transfer fluids.

Details

Title
The Effect of Ag-Decoration on rGO/Water Nanofluid Thermal Conductivity and Viscosity
Author
Lozano-Steinmetz, Felipe 1   VIAFID ORCID Logo  ; Martínez, Victor A 1   VIAFID ORCID Logo  ; Vasco, Diego A 1   VIAFID ORCID Logo  ; Sepúlveda-Mualin, Alonso 2 ; Singh, Dinesh Patrap 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, Faculty of Engineering, University of Santiago of Chile (USACH), Av. Lib. Bdo. O’Higgins 3363, Estación Central, Santiago 9170022, Chile; [email protected] (F.L.-S.); [email protected] (V.A.M.) 
 Millennium Institute for Research in Optics (MIRO), Physics Department, Faculty of Science, University of Santiago of Chile (USACH), Av. Víctor Jara 3493, Estación Central, Santiago 9170124, Chile; [email protected] (A.S.-M.); [email protected] (D.P.S.) 
First page
1095
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649055682
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.