Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The execution of smart contracts (SCs) relies on consensus algorithms that validate the miner who executes the contract and gets a fee to cover her expenditure. In this sense, miners are strategic agents who may focus on executing those contracts with the largest fee, to the detriment of other SCs’ execution times, which also harms the blockchain’s reputation. This paper analyzes the impact of miners’ competition on SCs’ execution times in a public blockchain. First, we explain that the Proof-of-Work mechanism casts similarities with a time auction, where the one who first adds blocks is the one who executes the contract and gets the fee. At equilibrium, costs negatively affect execution times, while the opposite holds concerning fees. However, this result does not capture the competition for other contracts; hence, we apply the Naïve Bayes method to classify SCs by considering a simulated database that comprises miners’ competition for several contracts. We observe that simultaneous competition generates patterns that differ from the ones expected by the auction solution. For example, miners’ valuation does not accelerate contracts’ execution, and high-cost smart contracts do not necessarily execute at last places.

Details

Title
Auction and Classification of Smart Contracts
Author
Gibaja-Romero, Damián-Emilio 1   VIAFID ORCID Logo  ; Rosa-María Cantón-Croda 2   VIAFID ORCID Logo 

 Department of Mathematics, UPAEP-University, C. 17 Sur 901, Barrio de Santiago, Puebla 72410, Mexico 
 Deanship of Engineering, UPAEP-University, C. 17 Sur 901, Barrio de Santiago, Puebla 72410, Mexico; [email protected] 
First page
1033
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649056196
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.