Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Identifying compound-protein (drug-target, DTI) interactions (CPI) accurately is a key step in drug discovery. Including virtual screening and drug reuse, it can significantly reduce the time it takes to identify drug candidates and provide patients with timely and effective treatment. Recently, more and more researchers have developed CPI’s deep learning model, including feature representation of a 2D molecular graph of a compound using a graph convolutional neural network, but this method loses much important information about the compound. In this paper, we propose a novel three-channel deep learning framework, named SSGraphCPI, for CPI prediction, which is composed of recurrent neural networks with an attentional mechanism and graph convolutional neural network. In our model, the characteristics of compounds are extracted from 1D SMILES string and 2D molecular graph. Using both the 1D SMILES string sequence and the 2D molecular graph can provide both sequential and structural features for CPI predictions. Additionally, we select the 1D CNN module to learn the hidden data patterns in the sequence to mine deeper information. Our model is much more suitable for collecting more effective information of compounds. Experimental results show that our method achieves significant performances with RMSE (Root Mean Square Error) = 2.24 and R2 (degree of linear fitting of the model) = 0.039 on the GPCR (G Protein-Coupled Receptors) dataset, and with RMSE = 2.64 and R2 = 0.018 on the GPCR dataset RMSE, which preforms better than some classical deep learning models, including RNN/GCNN-CNN, GCNNet and GATNet.

Details

Title
SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning
Author
Wang, Xun 1 ; Liu, Jiali 2 ; Zhang, Chaogang 2 ; Wang, Shudong 2 

 College of Computer Science and Technology, China University of Petroleum, Qingdao 266555, China; [email protected] (X.W.); [email protected] (J.L.); [email protected] (C.Z.); State Key Laboratory of Computer Architecture, Institute of Computing Technology, University of Chinese Academy of Sciences, Beijing 100080, China 
 College of Computer Science and Technology, China University of Petroleum, Qingdao 266555, China; [email protected] (X.W.); [email protected] (J.L.); [email protected] (C.Z.) 
First page
3780
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649066548
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.