Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of polymeric waste in the modification of asphalt binders for the construction of road pavements is a technique studied several years ago. However, the use of these materials involves high temperatures close to 190 °C, which generate large environmental impacts due to their emissions. In this study, an asphalt cement (AC) with low-density polyethylene (LDPE) residue contents of 5%, 7%, and 10% with respect to the mass of the AC was modified by the wet method. The modification was carried out using a temperature of 150 °C with the aim of preventing the oxidation of the AC and reducing the emissions generated at high temperatures. Based on the physical-rheological properties of the modified asphalt binder, it was found that 5% LDPE produces the best performance. Subsequently, a hot-mix asphalt type HMA-19 control without a modified asphalt binder and another with a modified asphalt binder were manufactured in order to evaluate the mechanical behavior by means of the Marshall test, an indirect tensile strength (ITS) test, resilient modulus (RM) testing, resistance to fatigue testing, permanent deformation testing, and the Cantabro test. Additionally, the asphalt mixtures were tested under the conditions of short-term aging (STOA, Short-Term Oven Aging), long-term aging (STOA + LTOA, Long-Term Oven Aging), and partial saturation with water (STOA + LTOA + water). Based on the results, an ANOVA analysis of variance was performed to assess whether the changes in the mechanical response of the modified mixture are statistically significant with respect to the control mixture. As a general conclusion, it is reported that mixtures with LDPE can be used for thick layers in high-temperature climates in order to control rutting.

Details

Title
Mechanical Behavior of Low-Density Polyethylene Waste Modified Hot Mix Asphalt
Author
Rincón-Estepa, Jessica Adaluz 1 ; González-Salcedo, Esthefanny Victoria 1 ; Rondón-Quintana, Hugo Alexander 2   VIAFID ORCID Logo  ; Reyes-Lizcano, Fredy Alberto 3 ; Bastidas-Martínez, Juan Gabriel 4 

 Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; [email protected] (J.A.R.-E.); [email protected] (E.V.G.-S.) 
 Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá D.C. 110231, Colombia 
 Facultad de Ingeniería, Centro de Estudios en carreteras, Transportes y Afines (CECATA), Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; [email protected] 
 Facultad de Ingeniería, Universidad Piloto de Colombia, Bogotá D.C. 110231, Colombia; [email protected] 
First page
4229
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649100284
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.