It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The COVID-19 pandemic repeatedly overwhelms healthcare systems capacity and forced the development and implementation of triage guidelines in ICU for scarce resources (e.g. mechanical ventilation). These guidelines were often based on known risk factors for COVID-19. It is proposed that image data, specifically bedside computed X-ray (CXR), provide additional predictive information on mortality following mechanical ventilation that can be incorporated in the guidelines. Deep transfer learning was used to extract convolutional features from a systematically collected, multi-institutional dataset of COVID-19 ICU patients. A model predicting outcome of mechanical ventilation (remission or mortality) was trained on the extracted features and compared to a model based on known, aggregated risk factors. The model reached a 0.702 area under the curve (95% CI 0.707-0.694) at predicting mechanical ventilation outcome from pre-intubation CXRs, higher than the risk factor model. Combining imaging data and risk factors increased model performance to 0.743 AUC (95% CI 0.746-0.732). Additionally, a post-hoc analysis showed an increase performance on high-quality than low-quality CXRs, suggesting that using only high-quality images would result in an even stronger model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 CERVO Brain Research Center, Québec, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Université Laval, Québec, Physics Department, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390)
2 CERVO Brain Research Center, Québec, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390)
3 Université Laval, Québec, Department of Radiology and Nuclear Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390)
4 Université Laval, Québec, Department of Family and Emergency Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Centre de recherche intégrée pour un système apprenant en santé et services sociaux, Lévis, Québec, Canada (GRID:grid.23856.3a)
5 Centre de recherche intégrée pour un système apprenant en santé et services sociaux, Lévis, Québec, Canada (GRID:grid.23856.3a)
6 Université Laval, Québec, Department of Family and Emergency Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Centre de recherche intégrée pour un système apprenant en santé et services sociaux, Lévis, Québec, Canada (GRID:grid.23856.3a); Centre de recherche sur les soins et les services de première ligne de l’Université Laval, Québec, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390)
7 Centre hospitalier de l’Université de Montréal, Montréal, Canada (GRID:grid.410559.c) (ISNI:0000 0001 0743 2111)
8 Université Laval, Electrical and Computer Engineering Department, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390)
9 Jewish General Hospital, Montréal, Canada (GRID:grid.414980.0) (ISNI:0000 0000 9401 2774); McGill University, Department of Diagnostic Radiology, Montréal, Canada (GRID:grid.14709.3b) (ISNI:0000 0004 1936 8649)
10 Université Laval, Québec, Department of Radiology and Nuclear Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada (GRID:grid.421142.0) (ISNI:0000 0000 8521 1798)
11 Université Laval, Québec, Department of Radiology and Nuclear Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Public Health Directory, Centre intégré universitaire santé et services sociaux de la Capitale Nationale, Québec, Québec, Canada (GRID:grid.23856.3a)
12 CERVO Brain Research Center, Québec, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Université Laval, Québec, Department of Radiology and Nuclear Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390)




