Full Text

Turn on search term navigation

© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of low‐cost and high‐efficiency catalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolyte is still challenging. Herein, interfacial Co/CoMoN heterostructures supported on Ni foam (Co/CoMoN/NF) are constructed by thermal ammonolysis of CoMoOx. In 1.0 m KOH solution, Co/CoMoN/NF heterostructures exhibit excellent HER activity with an overpotential of 173 mV at 100 mA cm−2 and a Tafel slope of 68.9 mV dec−1. Density functional theory calculations indicate that the low valence state Co site acts as efficient water‐dissociation promoter, while CoMoN substrate has favorable hydrogen adsorption energy, leading to an enhanced HER activity. The Co/CoMoN/NF heterostructures also achieve high OER activity with an overpotential of 303 mV at 100 mA cm−2 and a Tafel slope of 56 mV dec−1. Using Co/CoMoN/NF heterostructures as the cathode and anode, the alkaline electrolyzer requires a low voltage of 1.56 V to reach the current density of 100 mA cm−2 along with superior long‐term durability. This study provides a new design strategy toward low‐cost and excellent catalysts for water splitting.

Details

Title
Interface Engineering of Co/CoMoN/NF Heterostructures for High‐Performance Electrochemical Overall Water Splitting
Author
Ma, Haibin 1 ; Chen, Zhiwen 2 ; Wang, Zhili 1   VIAFID ORCID Logo  ; Chandra Veer Singh 3 ; Jiang, Qing 1 

 Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, China 
 Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada 
 Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada 
Section
Research Articles
Publication year
2022
Publication date
Apr 2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649890120
Copyright
© 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.