It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With the rise of coal mine underground reservoir engineering in the Shendong Mining Area, the space time dynamic evolution prediction of storage coefficient is becoming one of the critical technical problems for long-term reservoir operation. This coefficient directly determines the storage capacity and the comprehensive benefits of the operation of a coal mine underground reservoir. To this end, the proposed underground reservoir in Daliuta coal mine (No. 22616 working face) is selected in this study for the development and application of an experimental device to measure the storage coefficient. Rock and coal fragments from similar materials are prepared, which are filled and loaded according to the caving rock nature as well as the lumpiness and accumulation mode characteristics pertaining to No. 22616 working face. Subsequently, the measured storage coefficient under circulating water injection conditions revealed a four-dimensional spatial and temporal pattern. It followed the law of storage coefficient under joint interaction of water-rock and stress. The results showed that, prior to the experiment, rock and coal fragments made from similar materials had good water resistance when the paraffin content was set at 8%. The three stress zones were defined based on a theoretical analysis, which were applied on the corresponding loads. During the experiments, significant regional differences were found in the top surface with persisting subsidence of each stress loading zone. Hence, compared with its initial state, the maximum subsidence in the stress stability zone, the stress recovery zone, and the low-stress zone was 7.89, 5.8, and 1.83 mm, respectively. While the storage capacity and the storage coefficient gradually decreased, the former ranged from 0.2429 to 0.2397 m3, and the latter ranged from 0.270 to 0.266. The experimental results are verified by drainage engineering tests in the Shendong Mining Area. In essence, the storage coefficient had remarkable spatial distribution characteristics and a time-varying effect. In space, the storage coefficient increased with height along the vertical direction of the coal mine underground reservoir. However, it decreased with the distance from the boundary of the dam body in the horizontal direction. With time, the storage coefficient decreased dynamically. This study provides a new way of predicting the storage coefficient of a coal mine underground reservoir.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer