Full text

Turn on search term navigation

© 2022 Mahmoudi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We present a novel algorithm, implemented in the software ARGinfer, for probabilistic inference of the Ancestral Recombination Graph under the Coalescent with Recombination. Our Markov Chain Monte Carlo algorithm takes advantage of the Succinct Tree Sequence data structure that has allowed great advances in simulation and point estimation, but not yet probabilistic inference. Unlike previous methods, which employ the Sequentially Markov Coalescent approximation, ARGinfer uses the Coalescent with Recombination, allowing more accurate inference of key evolutionary parameters. We show using simulations that ARGinfer can accurately estimate many properties of the evolutionary history of the sample, including the topology and branch lengths of the genealogical tree at each sequence site, and the times and locations of mutation and recombination events. ARGinfer approximates posterior probability distributions for these and other quantities, providing interpretable assessments of uncertainty that we show to be well calibrated. ARGinfer is currently limited to tens of DNA sequences of several hundreds of kilobases, but has scope for further computational improvements to increase its applicability.

Details

Title
Bayesian inference of ancestral recombination graphs
Author
Ali Mahmoudi https://orcid.org/0000-0003-3813-3477; Jere Koskela https://orcid.org/0000-0002-2836-8777; Jerome Kelleher https://orcid.org/0000-0002-7894-5253; Yao-ban Chan https://orcid.org/0000-0002-8425-8775; David Balding https://orcid.org/0000-0002-1480-6115
First page
e1009960
Section
Research Article
Publication year
2022
Publication date
Mar 2022
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2651153299
Copyright
© 2022 Mahmoudi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.