It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Personalized modeling has long been anticipated to approach precise noninvasive blood glucose measurements, but challenged by limited data for training personal model and its unavoidable outlier predictions. To overcome these long-standing problems, we largely enhanced the training efficiency with the limited personal data by an innovative Deduction Learning (DL), instead of the conventional Induction Learning (IL). The domain theory of our deductive method, DL, made use of accumulated comparison of paired inputs leading to corrections to preceded measured blood glucose to construct our deep neural network architecture. DL method involves the use of paired adjacent rounds of finger pulsation Photoplethysmography signal recordings as the input to a convolutional-neural-network (CNN) based deep learning model. Our study reveals that CNN filters of DL model generated extra and non-uniform feature patterns than that of IL models, which suggests DL is superior to IL in terms of learning efficiency under limited training data. Among 30 diabetic patients as our recruited volunteers, DL model achieved 80% of test prediction in zone A of Clarke Error Grid (CEG) for model training with 12 rounds of data, which was 20% improvement over IL method. Furthermore, we developed an automatic screening algorithm to delete low confidence outlier predictions. With only a dozen rounds of training data, DL with automatic screening achieved a correlation coefficient (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Academia Sinica, Research Center for Applied Sciences, Taipei City, Taiwan (GRID:grid.28665.3f) (ISNI:0000 0001 2287 1366)
2 Academia Sinica, Research Center for Applied Sciences, Taipei City, Taiwan (GRID:grid.28665.3f) (ISNI:0000 0001 2287 1366); National Taiwan University, Department of Biomechatronics Engineering, Taipei City, Taiwan (GRID:grid.19188.39) (ISNI:0000 0004 0546 0241)