It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Coastal and offshore oil and gas structures and operations are subject to continuous exposure to environmental conditions (ECs) such as varying air and water temperatures, rough sea conditions, strong winds, high humidity, rain, and varying cloud cover. To monitor ECs, weather and wave sensors are installed on these facilities. However, the capital expenditure (CAPEX) and operational expenses (OPEX) of these sensors are high, especially for offshore structures. For observable ECs, such as cloud cover, a cost-effective deep learning (DL) classification model can be employed as an alternative solution. However, to train and test a DL model, a cloud cover image dataset is required. In this paper, we present a novel visual-range cloud cover image dataset for cloud cover classification using a deep learning model. Various visual-range sky images are captured on nine different occasions, covering six cloud cover conditions. For each cloud cover condition, 100 images are manually classified. To increase the size and quality of images, multiple label-preserving data augmentation techniques are applied. As a result, the dataset is expanded to 9,600 images. Moreover, to evaluate the usefulness of the proposed dataset, three DL classification models, i.e., GoogLeNet, ResNet-50, and EfficientNet-B0, are trained, tested, and their results are presented. Even though EfficientNet-B0 had better generalization ability and marginally higher classification accuracy, it was discovered that ResNet-50 is the best choice for cloud cover classification due to its lower computational cost and competitive classification accuracy. Based on these results, it is concluded that the proposed dataset can be used in further research in DL-based cloud cover classification model development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer