Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present work focuses on a detailed analysis of new and used braking friction partners (discs and pads) in order to provide a comprehensive characterization of the source of the airborne particles formed during braking. Scanning electron microscopy (SEM) combined with energy dispersive X-Ray analysis (EDX) was applied to investigate the new brake disc and new and used brake pad components of a passenger vehicle. The pads include at least 21 different substances, involving carbonaceous particles, oxides, sulfides, sulfates and silicates of Al, Si, K, Ca, Ti, Fe, Zr, Sn, less Mg, Ba, Na and, rarely, Bi and Zn, as well as K-titanate. Aramid and phenolic resin are also present, enriched toward the metal interface. The size of the pad constituents extends over a very wide range, from hundreds of µm to a few µm, and goes down to hundreds of nm and, rarely, tens of nanometers. Carbonaceous particles with sizes down to a few tens of nanometers occupy ca. 16% of the total of the pad constituents. Abundant Zr-bearing phases, as well as various other phases involving S, Ca, Mg, Si, Ti and, to a lower extent, Ba and Fe in different combinations, constitute the pad main matrix.

Details

Title
Electron Microscopic Characterization of the Brake Assembly Components (Disc and Pads) from Passenger Vehicles
Author
Panayotis Dimopoulos Eggenschwiler 1   VIAFID ORCID Logo  ; Schreiber, Daniel 1 ; Papetti, Viola 1 ; Gramstat, Sebastian 2   VIAFID ORCID Logo  ; Lugovyy, Dmytro 3 

 Empa, Swiss Federal Laboratories for Materials Science and Technology, Automotive Powertrain Technologies Laboratory, CH-8600 Dübendorf, Switzerland; [email protected] (D.S.); [email protected] (V.P.) 
 AUDI AG, 84045 Ingolstadt, Germany; [email protected] 
 Horiba Europe GmbH, 61440 Oberursel, Germany; [email protected] 
First page
523
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652953527
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.