Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The application of carbyne-enriched nanomaterials opens unique possibilities for enhancing the functional properties of several nanomaterials and unlocking their full potential for practical applications in high-end devices. We studied the ethanol-vapor-sensing performance of a carbyne-enriched nanocoating deposited onto surface acoustic wave (SAW) composite substrates with various electrode topologies. The carbyne-enriched nanocoating was grown using the ion-assisted pulse-plasma deposition technique. Such carbon nanostructured metamaterials were named 2D-ordered linear-chain carbon, where they represented a two-dimensionally packed hexagonal array of carbon chains held by the van der Waals forces, with the interchain spacing approximately being between 4.8 and 5.03 Å. The main characteristics of the sensing device, such as dynamic range, linearity, sensitivity, and response and recovery times, were measured as a function of the ethanol concentration. To the authors’ knowledge, this was the first time demonstration of the detection ability of carbyne-enriched material to ethanol vapors. The results may pave the path for optimization of these sensor architectures for the precise detection of volatile organic compounds, with applications in the fields of medicine, healthcare, and air composition monitoring.

Details

Title
Gas-Sensing Properties of a Carbyne-Enriched Nanocoating Deposited onto Surface Acoustic Wave Composite Substrates with Various Electrode Topologies
Author
Aleksandrova, Mariya 1   VIAFID ORCID Logo  ; Kolev, Georgi 1 ; Brigadin, Andrey 2 ; Lukin, Alexander 3   VIAFID ORCID Logo 

 Department of Microelectronics, Technical University of Sofia, 1000 Sofia, Bulgaria; [email protected] 
 Swissimpianti Sagl, 6828 Balerna, Switzerland; [email protected] 
 Western-Caucasus Research Center, Russian Federation, 352808 Tuapse, Russia; [email protected] 
First page
501
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652962395
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.