Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The age determination of fish is fundamental to marine resource management. This task is commonly done by analysis of otoliths performed manually by human experts. Otolith images from Greenland halibut acquired by the Institute of Marine Research (Norway) were recently used to train a convolutional neural network (CNN) for automatically predicting fish age, opening the way for requiring less human effort and availability of expertise by means of deep learning (DL). In this study, we demonstrate that applying a CNN model trained on images from one lab (in Norway) does not lead to a suitable performance when predicting fish ages from otolith images from another lab (in Iceland) for the same species. This is due to a problem known as dataset shift, where the source data, i.e., the dataset the model was trained on have different characteristics from the dataset at test stage, here denoted as target data. We further demonstrate that we can handle this problem by using domain adaptation, such that an existing model trained in the source domain is adapted to perform well in the target domain, without requiring extra annotation effort. We investigate four different approaches: (i) simple adaptation via image standardization, (ii) adversarial generative adaptation, (iii) adversarial discriminative adaptation and (iv) self-supervised adaptation. The results show that the performance varies substantially between the methods, with adversarial discriminative and self-supervised adaptations being the best approaches. Without using a domain adaptation approach, the root mean squared error (RMSE) and coefficient of variation (CV) on the Icelandic dataset are as high as 5.12 years and 28.6%, respectively, whereas by using the self-supervised domain adaptation, the RMSE and CV are reduced to 1.94 years and 11.1%. We conclude that careful consideration must be given before DL-based predictors are applied to perform large scale inference. Despite that, domain adaptation is a promising solution for handling problems of dataset shift across image labs.

Details

Title
Automatic Fish Age Determination across Different Otolith Image Labs Using Domain Adaptation
Author
Ordoñez, Alba 1   VIAFID ORCID Logo  ; Eikvil, Line 1 ; Arnt-Børre Salberg 1   VIAFID ORCID Logo  ; Harbitz, Alf 2 ; Elvarsson, Bjarki Þór 3   VIAFID ORCID Logo 

 Norwegian Computing Center, 0373 Oslo, Norway; [email protected] (L.E.); [email protected] (A.-B.S.) 
 Institute of Marine Research, 9294 Tromsø, Norway; [email protected] 
 Marine and Freshwater Research Institute, 220 Hafnarfjordur, Iceland; [email protected] 
First page
71
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
24103888
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652966021
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.