Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Web applications are the best Internet-based solution to provide online web services, but they also bring serious security challenges. Thus, enhancing web applications security against hacking attempts is of paramount importance. Traditional Web Application Firewalls based on manual rules and traditional Machine Learning need a lot of domain expertise and human intervention and have limited detection results faced with the increasing number of unknown web attacks. To this end, more research work has recently been devoted to employing Deep Learning (DL) approaches for web attacks detection. We performed a Systematic Literature Review (SLR) and quality analysis of 63 Primary Studies (PS) on DL-based web applications security published between 2010 and September 2021. We investigated the PS from different perspectives and synthesized the results of the analyses. To the best of our knowledge, this study is the first of its kind on SLR in this field. The key findings of our study include the following. (i) It is fundamental to generate standard real-world web attacks datasets to encourage effective contribution in this field and to reduce the gap between research and industry. (ii) It is interesting to explore some advanced DL models, such as Generative Adversarial Networks and variants of Encoders–Decoders, in the context of web attacks detection as they have been successful in similar domains such as networks intrusion detection. (iii) It is fundamental to bridge expertise in web applications security and expertise in Machine Learning to build theoretical Machine Learning models tailored for web attacks detection. (iv) It is important to create a corpus for web attacks detection in order to take full advantage of text mining in DL-based web attacks detection models construction. (v) It is essential to define a common framework for developing and comparing DL-based web attacks detection models. This SLR is intended to improve research work in the domain of DL-based web attacks detection, as it covers a significant number of research papers and identifies the key points that need to be addressed in this research field. Such a contribution is helpful as it allows researchers to compare existing approaches and to exploit the proposed future work opportunities.

Details

Title
Deep Learning for Vulnerability and Attack Detection on Web Applications: A Systematic Literature Review
Author
Alaoui, Rokia Lamrani  VIAFID ORCID Logo  ; El Habib Nfaoui  VIAFID ORCID Logo 
First page
118
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652967888
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.