Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Avocados (Persea americana Mill.) are one of the crops with the highest water footprints in Chile and the production is at risk due to severe and frequent droughts. The current production is mostly based on sexually (seed) propagated rootstocks, while clonally propagated rootstocks are on the rise. In a recent study, we found differences in aerial, root growth and water use efficiency between trees grown on these two different rootstocks under controlled continuous fertigation and environmental conditions. In this study, we further describe possible mechanisms which drive the differences. Avocado cv. “Hass” grafted on “Dusa” (D, clonally propagated) and “Mexicola” (M, sexually propagated) rootstocks and different root segments (3, 5 and 8 cm from root tip) were investigated using a combination of hydraulic measurements and polar metabolite (GC-MS) techniques. The results show significant differences in root hydraulic properties, indicating that “Mexicola” fine roots have higher water uptake capacity. The polar metabolites analysis revealed 13 compounds significantly different between rootstocks while nine were found significantly different among root segments. Principal component analysis (PCA) revealed differences between rootstocks and root segments. The data presented here highlight the importance of considering key physiological knowledge in avocado rootstocks breeding programs to be better prepared for future challenging environmental conditions.

Details

Title
Differential Hydraulic Properties and Primary Metabolism in Fine Root of Avocado Trees Rootstocks
Author
Beyer, Clemens P  VIAFID ORCID Logo  ; Barrientos-Sanhueza, Cesar  VIAFID ORCID Logo  ; Ponce, Excequel  VIAFID ORCID Logo  ; Pedreschi, Romina  VIAFID ORCID Logo  ; Cuneo, Italo F  VIAFID ORCID Logo  ; Alvaro, Juan E
First page
1059
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2653013801
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.