Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carvone is a monoterpene compound that has been widely used as a pesticide for more than 10 years. However, little is known regarding the fate of carvone, or its degradation products, in the environment. We used GC-MS (gas chromatography–mass spectrometry) to study the fate of carvone and its degradation and photolysis products under different soil and light conditions. We identified and quantified three degradation products of carvone in soil and water samples: dihydrocarvone, dihydrocarveol, and carvone camphor. In soil, dihydrocarveol was produced at very low levels (≤0.067 mg/kg), while dihydrocarvone was produced at much higher levels (≤2.07 mg/kg). In water exposed to differing light conditions, carvone was degraded to carvone camphor. The photolysis rate of carvone camphor under a mercury lamp was faster, but its persistence was lower than under a xenon lamp. The results of this study provide fundamental data to better understand the fate and degradation of carvone and its metabolites in the environment.

Details

Title
Degradation and Pathways of Carvone in Soil and Water
Author
Huang, Chenyu 1 ; Zhou, Wenwen 2 ; Bian, Chuanfei 1 ; Wang, Long 1 ; Li, Yuqi 3 ; Li, Baotong 1   VIAFID ORCID Logo 

 College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] (C.H.); [email protected] (C.B.); [email protected] (L.W.) 
 College of Food Sciences, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] 
 College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] 
First page
2415
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2653020086
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.