Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With growing concern about environmental pollution and occupational safety in construction industry globally, prefabricated building has become a popular building model in sustainable society. In China, management specifications of prefabricated buildings are far from mature, and safety accidents occur frequently in construction. In order to comprehensively analyze risks in hoisting construction of prefabricated buildings, this study, in view of characteristics of hoisting construction process and correlations in complex system, summarizes risk factors and classifies them according to Wuli-Shili-Renli (WSR) system. From perspective of multiple correlations, evolution mechanism of multi-system correlation and multi-risk correlation is carried out, so as to explore risk probability of hoisting construction of prefabricated buildings. At the same time, this study extends Two Additive Choquet Integral (TACI) operator and Decision-making Trial and Evaluation Laboratory (DEMATEL) in dynamic stochastic environment to construct a two-stage model for risk probability research of hoisting construction, hoping to profoundly reveal influence of risk factors and their dynamic evolution. The results show that: (1) risk probability presented a seasonal, dynamic change trend, which meant rising first, then falling, and finally keeping rising, thus regular inspection and dynamic monitoring are required in hoisting construction in these regions in the first three quarters. (2) the influence of each risk factor demonstrated dynamic changes, and risk sources that need to prevent and defuse at different time points are varied, thus targeted measures catering to different risk sources are required. (3) the degree of risk controllability is in dynamic change, but classification of cause or result in the region at the period remains the same, thus necessitating targeted response measures aimed at various risk types. (4) Individual risks like hoisting job climated break out periodically, so the law of risk occurrence should be mastered and relative precautionary measures should be taken in advance.

Details

Title
On Risk Probability of Prefabricated Building Hoisting Construction Based on Multiple Correlations
Author
Peng, Wan 1   VIAFID ORCID Logo  ; Wang, Junwu 1   VIAFID ORCID Logo  ; Liu, Ye 1 ; Lu, Qizhi 1 ; Chunbao Yuan 2 

 Engineering Management, School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China; [email protected] (P.W.); [email protected] (J.W.); [email protected] (Y.L.); [email protected] (Q.L.) 
 China Construction Seventh Engineering Division Corp. Ltd., Shenzhen 518000, China 
First page
4430
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2653038604
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.