It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To facilitate rapid determination of cellular viability caused by the inhibitory effect of drugs, numerical deep learning algorithms was used for unlabeled cell culture images captured by a light microscope as input. In this study, A549, HEK293, and NCI-H1975 cells were cultured, each of which have different molecular shapes and levels of drug responsiveness to doxorubicin (DOX). The microscopic images of these cells following exposure to various concentrations of DOX were trained with the measured value of cell viability using a colorimetric cell proliferation assay. Convolutional neural network (CNN) models for the study cells were constructed using augmented image data; the predicted cell viability using CNN models was compared to the cell viability measured by colorimetric assay. The linear relationship coefficient (r2) between measured and predicted cell viability was determined as 0.94–0.95 for the three cell types. In addition, the measured and predicted IC50 values were not statistically different. When drug responsiveness was estimated using allogenic models that were trained with a different cell type, the correlation coefficient decreased to 0.004085–0.8643. Our models could be applied to label-free cells to conduct rapid and large-scale tests while minimizing cost and labor, such as high-throughput screening for drug responsiveness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Daegu Gyeongbuk Institute of Science and Technology (DGIST), Division of Electronics and Information System Research, Daegu, Republic of Korea (GRID:grid.417736.0) (ISNI:0000 0004 0438 6721)