It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The calibration result of the IMU has a strong impact on the accuracy of inertial navigation and its integration with other navigation techniques. Thus, how to efficiently obtain high-precision IMU calibration results is an important research problem for localization and motion tracking with consumer devices. To solve this problem, this paper proposes a handheld calibration method. Similar to our previous work, the pseudo observation is used to replace the measurement equation of the Kalman filter in the GNSS/INS loosely-coupled navigation algorithm. Compared to the existing online calibration algorithm, a more convenient data acquisition method is used, and the heading constraint information is added to assist in obtaining the calibration results of the IMU. To verify the proposed algorithm, a simulator is used to generate the heading updates with various precisions. The proposed algorithm shows the potential to estimate the vertical gyro bias, which does not converge in the existing calibration method, within around 0.5s when the accuracy of the heading’s random error is 5 degrees. When the heading random error is 60 degrees, the vertical gyro bias can converge in about 6 seconds after rotation with the standard deviation of 121.7765 deg/h.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China
2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China; Hubei Luojia Laboratory, Wuhan, China