It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hyperspectral and Multispectral (HS-MS) image fusion is a most trending technology that enhance the quality of hyperspectral image. By this technology, retrieve the precise information from both HS and MS images combined together increase spatial and spectral quality of the image. In the past decades, many image fusion techniques have been introduced in literature. Most of them using Coupled Nonnegative matrix factorization (CNMF) technique which is based on Linear Mixing Model (LMM) which neglect the nonlinearity factors in the unmixing and fusion technique of the hyperspectral images. To overcome this limitation, we are going to propose an unmixing based fusion algorithm namely Multiplicative Iterative Nonlinear Constrained Coupled Nonnegative Matrix Factorization (MINC-CNMF) that enhance the spatial quality of the image by considering the nonlinearity factor associated with the unmixing process of in the image. This method not only consider the spatial quality but also enhance the spectral data by imposing constraints known as minimum volume (MV) which helps to estimate accurate endmembers. We also measure the strength and superiority of our method against baseline methods by using four public dataset and found that our method shows outstanding performance than all the baseline methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer