It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Classifying habitat patches as sources or sinks and determining metapopulation persistence requires coupling connectivity between habitat patches with local demographic rates. In this paper we show how next-generation matrices, originally popularized in epidemiology to calculate new infections after one generation, can be used in an ecological context to couple connectivity with local demography to calculate sources and sinks as well as metapopulation persistence in marine metapopulations. To demonstrate the utility of the method, we construct a next-generation matrix for a network of sea lice populations on salmon farms in the Broughton Archipelago, BC, an intensive salmon farming region on the west coast of Canada where certain salmon farms are currently being removed under an agreement between local First Nations and the provincial government. We identify the salmon farms which are acting as the largest sources of sea lice and show that in this region the most productive sea lice populations are also the most connected. We find that the farms which are the largest sources of sea lice have not yet been removed from the Broughton Archipelago, and that warming temperatures could lead to increased sea louse growth.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





