It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
BACKGROUND: It is frequently reported that neuropathic pain is associated with abnormalities in brain function and structure as well as cognitive deficits. However, the contributing mechanisms have remained elusive.
OBJECTIVES: We aimed to investigate the systemic ultrastructural changes of the peripheral nervous system (PNS) and central nervous system (CNS) in rats with trigeminal neuralgia (TN) induced by cobra venom, as well as the effects and mechanisms of electroacupuncture (EA) and pregabalin (PGB) on TN.
STUDY DESIGN: This study used an experimental design in rats.
SETTING: The research took place in the laboratory at the Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine.
METHODS: Male Sprague-Dawley rats were randomly divided into 4 groups (n = 12/group): cobra venom (CV), PGB, EA, and sham-operated (SHAM). The development of pain-related behaviors and spatial learning and memory abilities were measured using video recordings and Morris water maze tests, respectively. The ultrastructural changes of the PNS and CNS were examined using transmission electron microscopy. We also screened the differentially expressed genes and proteins in the prefrontal cortex and hippocampus using ribonucleic acid sequencing and isobaric tag for relative and absolute quantitation techniques, respectively. Data for the behavioral tests and molecular biology were analyzed with a one-way analysis of variance.
RESULTS: The rats in the CV group exhibited long-lasting pain-like behaviors, cognitive deficits, and systemic ultrastructural changes. Both EA and PGB alleviated the chronic pain syndrome, but EA also inhibited the chronic pain-induced cognitive dysfunction and restored normal cellular structures, while PGB was associated with no improvements. Transcriptomic and proteomic analyses revealed marcks, pak2 and acat1 were altered in rats with TN but were adjusted back to baseline by EA but not by PGB.
LIMITATIONS: We examined systemic ultrastructural alterations at different levels of the nervous system; however, the detailed timeline of the damage process was not explicitly delineated. Moreover, the current study provides only preliminary evidence for the neurobiological mechanisms of cognitive impairment resulting from chronic pain. Further research is still necessary (using models such as gene knockout rats and cell cultures) before a detailed mechanism can be postulated.
CONCLUSIONS: EA treatment may offer significant advantages when compared to PGB for the treatment of cognitive impairment associated with chronic pain. Moreover, marcks, pak2 and acat1 may be the potential therapeutic targets of EA.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer