Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The transportation network design and frequency setting problem concerns the optimization of transportation systems comprising fleets of vehicles serving a set amount of passengers on a predetermined network (e.g., public transport systems). It has been a persistent focus of the transportation planning community while, its NP-hard nature continues to present obstacles in designing efficient, all-encompassing solutions. In this paper, we present a new approach based on an alternating-objective genetic algorithm that aims to find Pareto optimality between user and operator costs. Extensive computational experiments are performed on Mandl’s benchmark test and prove that the results generated by our algorithm are 5–6% improved in comparison to previously published results for Pareto optimality objectives both in regard to user and operator costs. At the same time, the methods presented are computationally inexpensive and easily run on office equipment, thus minimizing the need for expensive server infrastructure and costs. Additionally, we identify a wide variance in the way that similar computational results are reported and, propose a novel way of reporting benchmark results that facilitates comparisons between methods and enables a taxonomy of heuristic approaches to be created. Thus, this paper aims to provide an efficient, easily applicable method for finding Pareto optimality in transportation networks while highlighting specific limitations of existing research both in regards to the methods used and the way they are communicated.

Details

Title
Public Transportation Network Design and Frequency Setting: Pareto Optimality through Alternating-Objective Genetic Algorithms
Author
Theocharis Vlachopanagiotis; Grizos, Konstandinos; Georgiadis, Georgios  VIAFID ORCID Logo  ; Politis, Ioannis  VIAFID ORCID Logo 
First page
248
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
26737590
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2656372397
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.