Abstract
Garbage detection and disposal have become one of the major hassles in urban planning. Due to population influx in urban areas, the rate of garbage generation has increased exponentially along with garbage diversity. In this paper, we propose a hardware solution for garbage segregation at the base level based on deep learning architecture. The proposed deep-learning-based hardware solution SmartBin can segregate the garbage into biodegradable and non-biodegradable using Image classification through a Convolutional Neural Network System Architecture using a Real-time embedded system. Garbage detection via image classification aims for quick and efficient categorization of garbage present in the bin. However, this is an arduous task as garbage can be of any dimension, object, color, texture, unlike object detection of a particular entity where images of objects of that entity do share some similar characteristics and traits. The objective of this work is to compare the performance of various pre-trained Convolution Neural Network namely AlexNet, ResNet, VGG-16, and InceptionNet for garbage classification and test their working along with hardware components (PiCam, raspberry pi, infrared sensors, etc.) used for garbage detection in the bin. The InceptionNet Neural Network showed the best performance measure for the proposed model with an accuracy of 98.15% and a loss of 0.10 for the training set while it was 96.23% and 0.13 for the validation set.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Bharati Vidyapeeth’s College of Engineering, Department of Computer & Science Engineering, New Delhi, India (GRID:grid.411685.f) (ISNI:0000 0004 0498 1133)
2 Vivekananda Institute of Professional Studies - Technical Campus, College of Engineering, New Delhi, India (GRID:grid.413002.4) (ISNI:0000 0001 2179 5111)
3 University of Córdoba, Area of Project Engineering, Córdoba, Spain (GRID:grid.411901.c) (ISNI:0000 0001 2183 9102)





