It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Plasmonic phenomena on the surface between metal and dielectric have received extensive attention, and have boosted a series of exciting techniques. Plasmonics describes the interaction between light and electronics and shows great potential in nanophotonics, optoelectronic devices, quantum physics, and surface-enhanced spectroscopy, etc. However, plasmonic phenomena are always suffering from the inherent loss issue of plasmonic materials at optical frequency, which has restricted further applications of plasmonics. In this review, we focus on the technique of waveguide effective plasmonics, which is a feasible low-loss realization of plasmonic metamaterials in lower frequency based on the structural dispersion. This review provides the underlying physics of the waveguide effective plasmonics and its applications varying from classical plasmonic concepts to novel effective plasmonic devices. Finally, we make a brief discussion on the direction of future researches and a prospect of the potential applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China