Full text

Turn on search term navigation

© 2020 Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Life expectancy (LE) is considered a straightforward summary measure of mortality that comes with an implicit age standardisation. Thus, it has become common to present differences in mortality across populations as differences in LE, instead of, say, relative risks. However, most of the time LE does not quite provide what the term promises. LE is based on a synthetic cohort and is therefore not the true LE of anyone. Also, the implicit age standardisation is construed in such a way that it can be questioned whether it standardises age at all. In this paper, we examine LE from the point of view of its applicability to epidemiological and public health research and provide examples on the relation between an LE difference and a relative risk. We argue that the age standardisation in estimations of LE is not straightforward since it is standardised against different age distributions and that the translation of changes in age specific mortality into change in remaining LE will depend on the level and the distribution of mortality in the population. We conclude that LE is not the measure of choice in aetiological research or in research with the aim to identify risk factors of death, but that LE may be a compelling choice in public health contexts. One cannot escape the thought that the mathematical elegance of LE has contributed to its popularity.

Details

Title
Life expectancy: what does it measure?
Author
Modig, Karin 1   VIAFID ORCID Logo  ; Rau, Roland 2 ; Ahlbom, Anders 1 

 Institute of Environmental Medicine, Unit of Epidemiology, Karolinska Institutet, Stockholm, Sweden 
 Max Planck Institute for Demographic Research, Rostock, Germany 
First page
e035932
Section
Epidemiology
Publication year
2020
Publication date
2020
Publisher
BMJ Publishing Group LTD
e-ISSN
20446055
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2662868782
Copyright
© 2020 Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.