Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A network intrusion detection model that fuses a convolutional neural network and a gated recurrent unit is proposed to address the problems associated with the low accuracy of existing intrusion detection models for the multiple classification of intrusions and low accuracy of class imbalance data detection. In this model, a hybrid sampling algorithm combining Adaptive Synthetic Sampling (ADASYN) and Repeated Edited nearest neighbors (RENN) is used for sample processing to solve the problem of positive and negative sample imbalance in the original dataset. The feature selection is carried out by combining Random Forest algorithm and Pearson correlation analysis to solve the problem of feature redundancy. Then, the spatial features are extracted by using a convolutional neural network, and further extracted by fusing Averagepooling and Maxpooling, using attention mechanism to assign different weights to the features, thus reducing the overhead and improving the model performance. At the same time, a Gated Recurrent Unit (GRU) is used to extract the long-distance dependent information features to achieve comprehensive and effective feature learning. Finally, a softmax function is used for classification. The proposed intrusion detection model is evaluated based on the UNSW_NB15, NSL-KDD, and CIC-IDS2017 datasets, and the experimental results show that the classification accuracy reaches 86.25%, 99.69%, 99.65%, which are 1.95%, 0.47% and 0.12% higher than that of the same type of CNN-GRU, and can solve the problems of low classification accuracy and class imbalance well.

Details

Title
Network Intrusion Detection Model Based on CNN and GRU
Author
Cao, Bo 1 ; Li, Chenghai 1 ; Song, Yafei 1   VIAFID ORCID Logo  ; Qin, Yueyi 2 ; Chen, Chen 1 

 College of Air and Missile Defense, Air Force Engineering University, Xi’an 710051, China; [email protected] (B.C.); [email protected] (C.L.); [email protected] (C.C.) 
 College of Computer, Chang’an University, Xi’an 710061, China; [email protected] 
First page
4184
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2662915805
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.