Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, deep eutectic solvents (DESs) were synthesized using different ratios of choline chloride (CC) and dicarboxylic acids, and their eutectic temperatures were determined. The DES synthesized using CC and glutaric acid (GA), which showed a higher extraction efficiency than conventional solvents, was used for the extraction of flavonoid components from Pyrus ussuriensis leaves (PUL), and the extraction efficiency was evaluated using the response surface methodology. The flavonoid components rutin, hyperoside, and isoquercitrin were identified through high-performance liquid chromatography (HPLC), equipped with a Waters 2996 PDA detector, and HPLC mass spectrometry (LC-MS/MS) analyses. The optimum extraction was achieved at a temperature of 30 °C using DES in a concentration of 30.85 wt.% at a stirring speed of 1113 rpm and an extraction time of 1 h. The corresponding flavonoid content was 217.56 μg/mL. The results were verified by performing three reproducibility experiments, and a high significance, with a confidence range of 95%, was achieved. In addition, the PUL extracts exhibited appreciable antioxidant activity. The results showed that the extraction process using the DES based on CC and GA in a 1:1 molar ratio could effectively improve the yield of flavonoids from PUL.

Details

Title
Enhanced Extraction Efficiency of Flavonoids from Pyrus ussuriensis Leaves with Deep Eutectic Solvents
Author
Jong Woo Lee 1 ; Hye Yoon Park 2   VIAFID ORCID Logo  ; Park, Junseong 1 

 Department of Engineering Chemistry, Chungbuk National University, Chungbuk, Cheongju 28644, Korea; [email protected] 
 Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea; [email protected] 
First page
2798
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2663049785
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.