Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An improved simulation-based thermoforming design process based on the integration of material characterization and as-formed structural analysis is proposed. The tendency of thermoplastic composites to wrinkle during forming has made simulation critical to optimized manufacturing, but the material models required are complex and time consuming to create. A suite of experimental methods has been developed for measurement of several required properties of the molten thermoplastic composite. These methods have the potential to enhance thermoplastic composites manufacturing by simplifying and expediting the process. These material properties have been verified by application to thermomechanical forming predictions using commercial simulation software. The forming predictions showed improved agreement with experimental results compared to those using representative material properties. A tool for using thermoforming simulations to inform more accurate structural models has been tested on a simple case study, and produced results that clearly differ from those of models using idealized fiber orientations and thicknesses. This provides evidence that this type of as-formed analysis may be necessary in some cases, and may be further investigated as an open source alternative to commercial analysis software.

Details

Title
Integration of Material Characterization, Thermoforming Simulation, and As-Formed Structural Analysis for Thermoplastic Composites
Author
Bean, Philip  VIAFID ORCID Logo  ; Lopez-Anido, Roberto A  VIAFID ORCID Logo  ; Vel, Senthil  VIAFID ORCID Logo 
First page
1877
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2663096754
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.