Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Stereolithography (SLA), one of the seven different 3D printing technologies, uses photosensitive resins to create high-resolution parts. Although SLA offers many advantages for medical applications, the lack of biocompatible and biobased resins limits its utilization. Thus, the development of new materials is essential. This work aims at designing, developing, and fully characterizing a bio-resin system (made of poly(ethylene glycol) diacrylate (PEGDA) and acrylated epoxidized soybean oil (AESO)), filled with micro- or nanocellulose crystals (MCC and CNC), suitable for 3D printing. The unfilled resin system containing 80 wt.% AESO was identified as the best resin mixture, having a biobased content of 68.8%, while ensuring viscosity values suitable for the 3D printing process (>1.5 Pa s). The printed samples showed a 93% swelling decrease in water, as well as increased tensile strength (4.4 ± 0.2 MPa) and elongation at break (25% ± 2.3%). Furthermore, the incorporation of MCC and CNC remarkably increased the tensile strength and Young’s modulus of the cured network, thus indicating a strong reinforcing effect exerted by the fillers. Lastly, the presence of the fillers did not affect the UV-light penetration, and the printed parts showed a high quality, thus proving their potential for precise applications.

Details

Title
Preparation and Characterization of 3D-Printed Biobased Composites Containing Micro- or Nanocrystalline Cellulose
Author
Raphael Palucci Rosa 1 ; Rosace, Giuseppe 2   VIAFID ORCID Logo  ; Arrigo, Rossella 3   VIAFID ORCID Logo  ; Malucelli, Giulio 3   VIAFID ORCID Logo 

 Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, Dalmine, 24044 Bergamo, Italy 
 Department of Engineering and Applied Sciences, University of Bergamo, Local INSTM Unit, Viale Marconi 5, Dalmine, 24044 Bergamo, Italy; [email protected] 
 Department of Applied Science and Technology, Politecnico di Torino, Local INSTM Unit, Viale T. Michel 5, Provincia di Alessandria, 15121 Alessandria, Italy; [email protected] (R.A.); [email protected] (G.M.) 
First page
1886
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2663107722
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.