Abstract

Pure organic room temperature phosphorescence (RTP) materials become increasingly important in advanced optoelectronic and bioelectronic applications. Current phosphors based on small aromatic molecules show emission characteristics generally limited to short wavelengths. It remains an enormous challenge to achieve red and near-infrared (NIR) RTP, particularly for those from nonaromatics. Here we demonstrate that succinimide derived cyclic imides can emit RTP in the red (665, 690 nm) and NIR (745 nm) spectral range with high efficiencies of up to 9.2%. Despite their rather limited molecular conjugations, their unique emission stems from the presence of the imide unit and heavy atoms, effective molecular clustering, and the electron delocalization of halogens. We further demonstrate that the presence of heavy atoms like halogen or chalcogen atoms in these systems is important to facilitate intersystem crossing as well as to extend through-space conjugation and to enable rigidified conformations. This universal strategy paves the way to the design of nonconventional luminophores with long wavelength emission and for emerging applications.

Pure organic room temperature phosphorescence (RTP) materials become increasingly important but achieving red and near-infrared (NIR) RTP remains challenging. Here, the authors demonstrate that succinimide derived cyclic imides can emit RTP in the red and NIR spectral range with outstanding efficiencies of up to 9.2%.

Details

Title
Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides
Author
Zhu Tianwen 1   VIAFID ORCID Logo  ; Yang, Tianjia 1   VIAFID ORCID Logo  ; Zhang, Qiang 1   VIAFID ORCID Logo  ; Yuan Wang Zhang 1   VIAFID ORCID Logo 

 Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2663135761
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.