It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The survival of the quantum spin Hall edge channels in presence of an external magnetic field has been a subject of experimental and theoretical research. The inversion of Landau levels that accommodates the quantum spin Hall effect is destroyed at a critical magnetic field, and a trivial insulating gap appears in the spectrum for stronger fields. In this work, we report the absence of this transport gap in disordered two dimensional topological insulators in perpendicular magnetic fields of up to 16 T. Instead, we observe that a topological edge channel (from band inversion) coexists with a counterpropagating quantum Hall edge channel for magnetic fields at which the transition to the insulating regime is expected. For larger fields, we observe only the quantum Hall edge channel with transverse resistance close to h/e2. By tuning the disorder using different fabrication processes, we find evidence that this unexpected ν = 1 plateau originates from extended quantum Hall edge channels along a continuous network of charge puddles at the edges of the device.
The quantum spin Hall effect disappears at high magnetic fields when the band inversion is lifted. The authors demonstrate that in contrast, in disordered samples, counter-propagating topological and quantum Hall edge channels prevent the detection of the trivial gap, explaining a previous observation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Universität Würzburg, Experimentelle Physik III, Physikalisches Institut, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658); Universität Würzburg, Institute for Topological Insulators, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658)
2 Universität Würzburg, Institut für Theoretische Physik und Astrophysik, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658)