It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Oil palm harvesting is a labor-intensive activity and yet it was rarely investigated. Studies showed that complementing human motion analysis with musculoskeletal modelling and simulation can provide valuable information about the dynamics of the joints and muscles. Therefore, this study aims to be the first to create and evaluate an upper extremity musculoskeletal model of the oil palm harvesting motion and to assess the associated Musculoskeletal Disorder (MSD) risk. Tests were conducted at a Malaysia oil palm plantation. Six Inertial Measurement Units (IMU) and Surface Electromyography (sEMG) were used to collect kinematics of the back, shoulder and elbow joints and to measure the muscle activations of longissimus, multifidus, biceps and triceps. The simulated joint angles and muscle activations were validated against the commercial motion capture tool and sEMG, respectively. The muscle forces, joint moments and activations of rectus abdominis, iliocostalis, external oblique, internal oblique and latissimus dorsi were investigated. Findings showed that the longissimus, iliocostalis and rectus abdominis were the primary muscles relied on during harvesting. The harvesters were exposed to a higher risk of MSD while performing back flexion and back rotation. These findings provide insights into the dynamical behavior of the upper extremity muscles and joints that can potentially be used to derive ways to improve the ergonomics of oil palm harvesting, minimize the MSD risk and to design and develop assistive engineering and technological devices or tools for this activity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Monash University Malaysia, School of Engineering, Bandar Sunway, Malaysia (GRID:grid.440425.3) (ISNI:0000 0004 1798 0746)
2 Monash University Malaysia, School of Engineering, Bandar Sunway, Malaysia (GRID:grid.440425.3) (ISNI:0000 0004 1798 0746); Monash University Malaysia, Monash Industry Palm Oil Research Platform, Bandar Sunway, Malaysia (GRID:grid.440425.3) (ISNI:0000 0004 1798 0746)
3 Sime Darby Technology Centre, Serdang, Malaysia (GRID:grid.440425.3)