Content area

Abstract

Spatial transcriptomic technologies promise to resolve cellular wiring diagrams of tissues in health and disease, but comprehensive mapping of cell types in situ remains a challenge. Here we present сell2location, a Bayesian model that can resolve fine-grained cell types in spatial transcriptomic data and create comprehensive cellular maps of diverse tissues. Cell2location accounts for technical sources of variation and borrows statistical strength across locations, thereby enabling the integration of single-cell and spatial transcriptomics with higher sensitivity and resolution than existing tools. We assessed cell2location in three different tissues and show improved mapping of fine-grained cell types. In the mouse brain, we discovered fine regional astrocyte subtypes across the thalamus and hypothalamus. In the human lymph node, we spatially mapped a rare pre-germinal center B cell population. In the human gut, we resolved fine immune cell populations in lymphoid follicles. Collectively, our results present сell2location as a versatile analysis tool for mapping tissue architectures in a comprehensive manner.

A Bayesian model maps the location of cell types in tissues with higher sensitivity.

Details

Title
Cell2location maps fine-grained cell types in spatial transcriptomics
Author
Kleshchevnikov Vitalii 1   VIAFID ORCID Logo  ; Shmatko Artem 2   VIAFID ORCID Logo  ; Dann, Emma 1   VIAFID ORCID Logo  ; Aivazidis Alexander 1 ; King, Hamish W 3   VIAFID ORCID Logo  ; Li, Tong 1   VIAFID ORCID Logo  ; Elmentaite Rasa 1   VIAFID ORCID Logo  ; Lomakin Artem 4   VIAFID ORCID Logo  ; Kedlian Veronika 1 ; Gayoso Adam 5   VIAFID ORCID Logo  ; Jain, Mika Sarkin 6 ; Park, Jun Sung 7   VIAFID ORCID Logo  ; Lauma, Ramona 1 ; Tuck, Elizabeth 1 ; Arutyunyan Anna 1   VIAFID ORCID Logo  ; Vento-Tormo Roser 1   VIAFID ORCID Logo  ; Gerstung Moritz 4   VIAFID ORCID Logo  ; James, Louisa 8   VIAFID ORCID Logo  ; Stegle Oliver 9   VIAFID ORCID Logo  ; Bayraktar, Omer Ali 1   VIAFID ORCID Logo 

 Wellcome Sanger Institute, Hinxton, Cambridge, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382) 
 Wellcome Sanger Institute, Hinxton, Cambridge, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382); Moscow State University, Leninskie Gory, Moscow, Russia (GRID:grid.14476.30) (ISNI:0000 0001 2342 9668) 
 Wellcome Sanger Institute, Hinxton, Cambridge, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382); Blizard Institute, Queen Mary University of London, Centre for Immunobiology, London, UK (GRID:grid.4868.2) (ISNI:0000 0001 2171 1133) 
 European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, UK (GRID:grid.225360.0) (ISNI:0000 0000 9709 7726); Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (GRID:grid.4709.a) (ISNI:0000 0004 0495 846X) 
 University of California, Berkeley, Center for Computational Biology, Berkeley CA, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
 Wellcome Sanger Institute, Hinxton, Cambridge, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382); University of Cambridge, Theory of Condensed Matter, Department of Physics, Cavendish Laboratory, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934) 
 Wellcome Sanger Institute, Hinxton, Cambridge, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382); European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, UK (GRID:grid.225360.0) (ISNI:0000 0000 9709 7726) 
 Blizard Institute, Queen Mary University of London, Centre for Immunobiology, London, UK (GRID:grid.4868.2) (ISNI:0000 0001 2171 1133) 
 Wellcome Sanger Institute, Hinxton, Cambridge, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382); Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany (GRID:grid.4709.a) (ISNI:0000 0004 0495 846X); German Cancer Research Center (DKFZ), Division of Computational Genomics and Systems Genetics, Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584) 
Pages
661-671
Publication year
2022
Publication date
May 2022
Publisher
Nature Publishing Group
ISSN
10870156
e-ISSN
15461696
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2664959510
Copyright
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.