Content area
Abstract
As the biomedical community produces datasets that are increasingly complex and high dimensional, there is a need for more sophisticated computational tools to extract biological insights. We present Multiscale PHATE, a method that sweeps through all levels of data granularity to learn abstracted biological features directly predictive of disease outcome. Built on a coarse-graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse resolutions for high-level summarizations of data and at fine resolutions for detailed representations of subsets. We apply Multiscale PHATE to a coronavirus disease 2019 (COVID-19) dataset with 54 million cells from 168 hospitalized patients and find that patients who die show CD16hiCD66blo neutrophil and IFN-γ+ granzyme B+ Th17 cell responses. We also show that population groupings from Multiscale PHATE directly fed into a classifier predict disease outcome more accurately than naive featurizations of the data. Multiscale PHATE is broadly generalizable to different data types, including flow cytometry, single-cell RNA sequencing (scRNA-seq), single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), and clinical variables.
Disease signatures in high-dimensional biomedical data are detected with a visualization algorithm.
Details
; Lucas, Carolina 3
; Klein, Jon 3
; Burkhardt, Daniel B 6
; Gigante, Scott 7
; Godavarthi Abhinav 8 ; Rieck Bastian 9
; Israelow Benjamin 10
; Simonov, Michael 5 ; Mao Tianyang 3
; Oh, Ji Eun 3 ; Silva, Julio 3 ; Takahashi, Takehiro 3
; Odio, Camila D 5 ; Casanovas-Massana Arnau 11 ; Fournier, John 12 ; Obaid Abeer 13 ; Moore, Adam 14 ; Lu-Culligan, Alice 3 ; Nelson, Allison 13 ; Anderson, Brito 12 ; Nunez, Angela 13 ; Martin, Anjelica 3 ; Wyllie, Anne L 9 ; Watkins, Annie 12 ; Park Annsea 3 ; Venkataraman Arvind 3 ; Geng Bertie 13 ; Chaney, Kalinich 12 ; Vogels Chantal B F 9 ; Harden, Christina 12 ; Todeasa Codruta 13 ; Jensen, Cole 12 ; Kim, Daniel 3 ; McDonald, David 13 ; Shepard, Denise 13 ; Courchaine, Edward 15 ; White, Elizabeth B 12 ; Song, Eric 3 ; Silva, Erin 13 ; Kudo Eriko 3 ; DeIuliis Giuseppe 13 ; Wang, Haowei 12 ; Rahming, Harold 13 ; Hong-Jai, Park 13 ; Matos, Irene 13 ; Ott, Isabel M 9 ; Nouws Jessica 13 ; Valdez, Jordan 13 ; Fauver, Joseph 12 ; Lim, Joseph 16 ; Kadi-Ann, Rose 13 ; Anastasio, Kelly 17 ; Brower, Kristina 12 ; Glick, Laura 13 ; Sharma, Lokesh 13 ; Sewanan Lorenzo 13 ; Knaggs Lynda 13 ; Minasyan Maksym 13 ; Batsu, Maria 13 ; Tokuyama, Maria 3 ; Cate, Muenker M 13 ; Petrone, Mary 12 ; Kuang, Maxine 12 ; Nakahata Maura 13 ; Campbell, Melissa 18 ; Linehan, Melissa 3 ; Askenase, Michael H 19 ; Smolgovsky Mikhail 13 ; Grubaugh, Nathan D 20 ; Sonnert Nicole 3 ; Nida, Naushad 13 ; Vijayakumar Pavithra 13 ; Lu Peiwen 3 ; Earnest, Rebecca 9 ; Martinello, Rick 11 ; Herbst, Roy 21 ; Datta Rupak 1 ; Handoko Ryan 13 ; Santos, Bermejo 13 ; Lapidus, Sarah 9 ; Prophet, Sarah 13 ; Bickerton, Sean 15 ; Velazquez Sofia 19 ; Mohanty Subhasis 12 ; Alpert, Tara 1 ; Rice, Tyler 3 ; Schulz, Wade 22 ; Khoury-Hanold, William 3 ; Peng Xiaohua 13 ; Yang Yexin 3 ; Cao Yiyun 3 ; Strong, Yvette 13 ; Farhadian Shelli 12
; Dela Cruz Charles S 23 ; Ko, Albert I 24
; Hirn, Matthew J 25
; Perry, Wilson F 26 ; Hussin, Julie G 27
; Wolf, Guy 28
; Iwasaki Akiko 29
; Krishnaswamy Smita 30
1 Yale University, Department of Neuroscience, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
2 Yale University, Department of Computer Science, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
3 Yale University, Department of Immunobiology, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
4 Montreal Heart Institute, Montreal, Canada (GRID:grid.482476.b) (ISNI:0000 0000 8995 9090)
5 Yale University, Department of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
6 Yale University, Department of Genetics, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
7 Yale University, Computational Biology, Bioinformatics Program, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
8 Yale University, Department of Applied Mathematics, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
9 ETH Zurich, Department of Biosystems Science and Engineering, Zurich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780)
10 Yale University, Department of Immunobiology, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710); Yale University School of Medicine, Section of Infectious Diseases, Department of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
11 Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
12 Yale University School of Medicine, Section of Infectious Diseases, Department of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
13 Yale University School of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
14 Yale University School of Public Health, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
15 Yale University School of Medicine, Department of Biochemistry and Molecular Biology, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
16 Yale University School of Medicine, Yale Viral Hepatitis Program, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
17 Yale University School of Medicine, Yale Center for Clinical Investigation, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
18 Michigan State University, Department of Mathematics, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785)
19 Yale University School of Medicine, Department of Neurology, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
20 Yale New Haven Hospital, Yale Cancer Center, New Haven, USA (GRID:grid.417307.6)
21 Yale University School of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710); Yale New Haven Hospital, Yale Cancer Center, New Haven, USA (GRID:grid.417307.6); Yale New Haven Hospital, Smilow Cancer Hospital, New Haven, USA (GRID:grid.417307.6)
22 Yale University, Center of Biomedical Data Science, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
23 Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, Department of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710); West Haven Connecticut Veterans Affairs Medical Center, Department of Medicine, West Haven, USA (GRID:grid.281208.1) (ISNI:0000 0004 0419 3073)
24 Yale University School of Medicine, Section of Infectious Diseases, Department of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710); Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
25 Michigan State University, Department of Mathematics, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785); Michigan State University, Department of Computational Mathematics, Science and Engineering, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785)
26 Yale University, Clinical and Translational Research Accelerator, Department of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)
27 Montreal Heart Institute, Montreal, Canada (GRID:grid.482476.b) (ISNI:0000 0000 8995 9090); Université de Montréal, Faculty of Medicine, Montreal, Canada (GRID:grid.14848.31) (ISNI:0000 0001 2292 3357)
28 Mila – Quebec AI institute, Montreal, Canada (GRID:grid.14848.31); Université de Montréal, Department of Mathematics and Statistics, Montreal, Canada (GRID:grid.14848.31) (ISNI:0000 0001 2292 3357)
29 Yale University, Department of Immunobiology, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710); Howard Hughes Medical Institute, Chevy Chase, USA (GRID:grid.413575.1) (ISNI:0000 0001 2167 1581)
30 Yale University, Department of Computer Science, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710); Yale University, Department of Genetics, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710)





