It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
More than half of the world-population lives in urban areas, with more than 1 billion people lacking basic services and infrastructure. Spatially targeted, data-driven policies are crucial for sustainable urban planning to improve these situations and increase the resilience. Earth observation (EO) can support the process of achieving the SDGs, in particular SDG 11. Aiming at such high-level targets requires a multi-source data environment, defining and extracting suitable EO-based indicators and linking them with socio-economic or environmental data. When embedded in the context of humanitarian response, where physical access to regions is often limited while at the same time, insights on several scales of intervention are key to rapid decisions, the integration of (potentially) heterogeneous datasets requires adequate data assimilation strategies and a good understanding of data quality. This paper investigates the usability of datasets regarding technical and organisational aspects from an application-driven point of view. We suggest a protocol considering various quality dimensions to evaluate via scoring the fitness of multi-source geospatial datasets to integration. The aim is to provide a general orientation towards data assimilability in the context of deriving higher-level indicators, while specific constraints and the need to relativize may occur for concrete use case.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Christian Doppler Laboratory GEOHUM, Department of Geoinformatics, University of Salzburg, Austria; Christian Doppler Laboratory GEOHUM, Department of Geoinformatics, University of Salzburg, Austria