Abstract

Complex dynamics such as period doubling and chaos occur in a wide variety of non-linear dynamical systems. In the context of biological circadian clocks, such phenomena have been previously found in computational models, but their experimental study in biological systems has been challenging. Here, we present experimental evidence of period doubling in a forced cell-free genetic oscillator operated in a microfluidic reactor, where the system is periodically perturbed by modulating the concentration of one of the oscillator components. When the external driving matches the intrinsic period, we experimentally find period doubling and quadrupling in the oscillator dynamics. Our results closely match the predictions of a theoretical model, which also suggests conditions under which our system would display chaotic dynamics. We show that detuning of the external and intrinsic period leads to more stable entrainment, suggesting a simple design principle for synchronized synthetic and natural genetic clocks.

In theory, driven biological oscillators can display complex dynamic behaviors, but these are experimentally difficult to observe. Here the authors, using microfluidics, show that a synthetic cell-free gene oscillator displays period doubling and even quadrupling.

Details

Title
Complex dynamics in a synchronized cell-free genetic clock
Author
Aufinger Lukas 1   VIAFID ORCID Logo  ; Brenner, Johann 1   VIAFID ORCID Logo  ; Simmel, Friedrich C 1   VIAFID ORCID Logo 

 Physics Department - E14, Technical University Munich, Garching, Germany (GRID:grid.6936.a) (ISNI:0000000123222966) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2667964261
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.